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Abstract—The pH neutralization process is a representative nonlinear process. If a change in feed or buffer streams
is introduced, the characteristics of the titration curve are altered and the way of change in titration curve is highly
nonlinear. Moreover, if the changes are introduced in the middle of operation, then the nature of the process becomes
nonlinear and time-varying. This is the one of the reason why conventional PID controller may fail. Even though the
use of buffer solution may alleviate the nonlinearity, the improvement may be limited. A better way to tackle this type
of process is to use nonlinear model-based control techniques with online parameter estimation. However, in most
cases, the measurements of the process are not adequate enough so that the full state feedback control technigques can
be utilized. If the states and crucial parameters are estimated online simultaneously, the effectiveness of the nonlinear
state feedback control can be greatly enhanced. Thus, in this study, the capability of simultaneous estimation of states
and parameters using Extended Kalman Filter (EKF) are experimentally investigated for a pH neutralization process.
The process is modelled using reaction invariants and the concentrations of reaction invariants of the effluent stream
(states) and the feed concentrations (parameters) are estimated online. From the comparison of experiments and
simulations, it is found that the states and parameters can efficiently be identified simultaneously with EKF so that the
estimated information can be exploited by state-feedback control techniques.
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INTRODUCTION situations unless some provisions are furnished to relax such restric-
tive assumptions.

It is widely known that the neutralization of a pH process exhib- Due to the importance of the model for the model-based control,
its nonlinear and time-varying nature even for some nonimal opermany efforts have been exerted in the development of the model for
ating conditions [Waller and Gustaffson, 1983]. Thus, it has longpH neutralization system. They can be grouped into two basic cat-
been taken as a representative benchmark problem of nonlinear cheagories. The first approaches are based on the black-box model in-
ical process control. It is not only due to its importance in variouscluding neural networks [Loh et al., 1995] or fuzzy logic [Cho et
chemical and related industries but also due to the intricate and trickgd., 1999; Nie et al., 1996]. The other groups explicitly use the chem-
intrinsic nonlinearities that may change sensitively to small changegal nature of pH processes. The latter approach based on physico-
in process conditions. Several different approaches for control havehemical laws and provides more insights on physical parameters.
been proposed in order to deal with this nonlinear system. Thesa general dynamic model of the pH neutralization process had been
include a simple PID for regulation, self tuning adaptive control, discussed earlier by the one of the second groups, McAvoy et al.
nonlinear linearization control and various model based control[1972] They derived a mathematical model from the first princi-
Addressing such nonlinear characteristics, recent pH control stugsles,i.e, ionic balances and chemical equilibria. Jutila [1981] and
ies are mostly directed to development and/or application of modelutila et al. [1981] developed their model for hypothetical species
based nonlinear control techniques. However, as has been indicatalbng the lines of McAvoy. Then they used a Kalman filter to esti-
in Waller [1985] and Gustafsson [1992] and Henson and Seborgnate the concentrations and the parameters of titration curves are
[1992, 1994], performance enhancement from the employment aflentified. Later, Waller and Mékilé [1981] proposed to use the con-
nonlinear control techniques may be only marginal compared tacept of reaction invariant in modeling and control of a pH neutraliza-
that of well-tuned linear controllers despite the computational comdion process. If the reaction invariants were used, the total amount
plexity. One of the reasons for this is the limitation of the nonlinearof the reaction invariant would not be influenced by the extent of
pH models. Most models are tuned only over a narrow operatingeaction and component balance with respect to reaction invariants
region or constructed under quite restricted assumptions such ageatly could simplify the modeling procedure [Gustaffson and Wal-
constant buffer compositions and/or constant feed compositions, arldr, 1983, 1992; Gustaffson et al., 1995]. These reaction invariants
so on. Because a small change in buffer may cause a large changere estimated by a least-squares method. Instead of considering a
in the titration curve [Jutila and Orava, 1981; Jutila, 1983], nonlin-detailed component balance, Wright et al. [1991] proposed a sim-
ear model-based control techniques may not be successful in reglified model using the concept of the strong acid equivalent. The

strong acid equivalent is a formula to account for the total contri-
To whom correspondence should be addressed. bution of the acidic ions to pH. They developed an on-line identifi-
E-mail: dryang@korea.ac.kr cation technique for the parameters valid over an arbitrary pH range
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and evaluated the performance in an experimental pH neutralizaand effluent streams are chosen as the parameters and states. The
tion apparatus [Wright and Kravaris, 1998, 2001]. performance of the on-line EKF has been evaluated experimentally

Even though an accurate model is obtained, the time-varying naand compared to the simulation results.
ture of the process has to be accounted for. For example, the con-
centration of the buffer stream causes drastic changes in titration EXPERIMENTAL APPARATUS
curve as mentioned above. Also, the inaccuracy of the estimate of FOR pH NEUTRALIZATION
the unmeasured states can affect the performance of the identifica-
tion and control scheme. To overcome the problems caused by the An experimental apparatus is used to examine the performance
inaccuracy of the model or changes of operating conditions, the praef the EKF for simultaneous identification of states and parameters.
cess model has to be updated with appropriate parameter identifi-he schematic diagram of pH neutralization experimental apparatus
cation techniques [Lee et al., 1999, 2001; Yoon et al., 1999]. Thuds given in Fig. 1 and the nominal operating conditions are shown in
many different model-based control methods have been proposethble 1. The reactor type is a continuous stirred tank reactor (CSTR)
under different problem settings. Generally, the control strategiesnd its volume is 25and baffles are installed to reduce swirling.
using this modeling technique are classified into non-adaptive lin-The exit flow rate is decided by the amount of the overflow through
ear, adaptive linear, non-adaptive non-linear, and adaptive non-linear partition so that the perfect level control can be assumed. The inlet
controls. Among them, the non-adaptive linear control methods arstreams consist of a strong acid streaymfégd solution), a weak
adequate for processes insensitive to operating condition changesid stream (g buffer solution) and a strong base streamtiq
and the linear adaptive controllers perform well only if titration curve trating solution). The acid feed stream is composed of HXO
shows that the process dynamic properties are fixed [Henson aidaHCQ, the buffer stream contains NaHC@ahd the titrating stream
Seborg, 1997]. Gustafsson and Waller [1992] designed an adaptive composed of NaOH and NaHCBach stream is supplied by a
nonlinear controller for buffered pH neutralization processes. Theilperistaltic pump and mixed in the reactor. Both the feed flow rate
experiment demonstrated that the proposed adaptive nonlinear coand the buffer flow rate are adjusted manually. Hence, their flow rate
troller outperforms the conventional PID and linear adaptive con-changes are considered to be measurable. The effluent pH is mea-
trollers. Henson and Seborg [1997] proposed an indirect adaptiveured by pH electrode and the signal is sent to a computer through
controller based on a filtered regressor identifier for linearly param-ADC. The computer controls the flow rate of the titrating (base)
eterized non-linear system. This indirect adaptive controller esti:
mates the time-varying parameters of the model on the basis of ol
served data and error signals. They show that their model-base
nonlinear controller has a good performance through simulations FTToT
In the study of Wright and Kravaris [2001], they identified crucial Convener
parameters to account for the nonlinearity and then designed a co :
trol algorithm in terms of the Strong Acid Equivalent, and they testec
the proposed algorithm to an industrial pH neutralization.

As described above, in many control techniques, a good mode
is imperative for implementing an effective control. In the light of
control view points, the dynamic models for various model-basec

q2

(1

controllers involve state variables. However, in most cases, the fu % ) % ) @ T}

states are not available on-line for the state feedback control. If th )
states for the state feedback control are not available, then they shot
resort to state estimators. This study is concerned with designin 0

an on-line identification method for the system of which nonlinearity

is unknown and time-varying. In buffered process, the titration curveFig. 1. The experimental apparatus for pH neutralization.
can be changed significantly by the changes in buffer concentration,

and this leads to the time-varying nonlinearity. Once these changes

can be estimated, the reaction invariant model can effectively rept@ble 1. Nominal operating conditions and parameters

resent the pH process. The extended Kalman filter (EKF) is one ofSymbols Values Symbols Values

the well-known nonlinear identification methods [Kalman, 1960; —, 2,500 [m] G 8.5 [ml/s]
Ljung, 1979]. The EKF can estimate the states and the unknown A.47x107 pH,  7.00
parameters in stochastic dynamic systems where the process noise Kal 5 62x10M W X 2.95x10° [M]
characteristics are known in advance [Jazwinski, 1970]. However, 2 ' “ ' 5

one can hardly find the experimental results of simultaneous state [a.)  ©0.003 ['\5/” HNO, Wia  5.00x10° [M]
and parameter estimation via EKF for the pH neutralization pro- 5.0>10° [M] H.CO, Wee  ~0.01[M]
cesses. Thus, in this study, the EKF has been experimentally applied [4:] 0.01 [M] NaHCQ W, 0.01[M] 5

to the simultaneous estimation of states and process parameters of Qs 0.003 [M] NaOH W, -3.05x10°[M]
pH neutralization process, which can provide the reliable state and 5.0x10°[M] NaHCOy Wi 5.00x10°[M]
parameter measurements for nonlinear model-based controls. Using % 9.0 [ml/s] W, -4.50x10°[M]
the reaction invariant model, the reaction invariants of the influent % 0.6 [ml/s] W, 5.50x10*[M]
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stream through DAC. The experiments are assumed to be carried , , dW, _

out under thegassumptions ofz perfect mixing, a constant tempera- Vit ~0WonmWoe) *G(Wee “Whe) *Gs(Wes ~Whoe) ©)

ture (at room temperature 25 and complete solubility of the ions .

invols/ed. The samppling pe(iﬁ?d for pH nﬁeasuremer?cl and control ién the above model, it can be reasonably assumed that all the flow

3sec, and dynamics of pumps and sensor are assumed to be nEﬁ_es of the streams and the concentrations of the base stream are

ligible. own b_ecaL_Jse the ﬂovx_/ rates of streams are controlled b_y pumps
and the titrating stream is prepared as needed. The reaction invari-

ants of the effluent stream are chosen as states and then the remain-

ing unknowns are concentrations for the feed and buffer streams.

The general mathematical model for pH neutralization proces or the sake of investigation, we chose two disturbance variables.

with reaction invariants is presented in this section. A schematic hey are the charge-related reaction invariant in feed stregin (W

diagram of the experimental apparatus is shown in Fig. 1. The pro"Elnd the carbonate ion-related reaction invariang)(When, the

cess flows consist of an acid streagh @buffer stream gy a base (_:oncerned pH process model can be rewritten in the following non-
stream (g) and an effluent stream,)gFor this process, the chemi- linear state space model.
cal reactions in the reactor are assumed as equilibrium reactions x =f(x,t) +g(x, tju +F,0

MODEL OF pH NEUTRALIZATION PROCESS

with only weak acid solutions because the strong acid and base solu- ¢(x, y) =0 @
tions are completely ionized. The chemical reactions occurred in
the system are as follows. where
H,CO,«<>HCO;+H" 1 oy lTw. -
HOO; > COF +H f(x) =\7{ ez ) qlﬂ, o9 :\7{ " Xl}
H,O<>OH +H" 1) 0u(Why —X2) ~0OX, Wz =X,
2
The equilibrium constants for these reactions are Fg=l @0 , 0= Wa , X= Was
Vio G W, Wh,
HCO:][H"
Kal:% U=0s y=pH, pK;=-logKy, pK,=-logK,,
2 3, ~pK,
_[COINHT c(x,y) =x,+10" =107 +x _1¥2x10 7
K™ [HCOj] oy = 1+107 7Y +107%
Kw=[H][OH] @

In the abovep contains the unknown parameters chosen. The
The chemical equilibria are modeled using the concept of reacreasoning behind this choice is as follows; Mfresents a charge
tion invariant [Gustafsson and Waller, 1983]. For this system, tworelated quantity and gives the hydrogen ion related information of
reaction invariants are involved for each stream-({H1 the feed stream. In practical situations, major ionic species con-

W, =[H'], -[OHT], -[HCO]], ~2[CT ], tain(ra]d in the feed stream'ari' usu:lilly fixed but thehco;nposition _of
W,, =[H,COJJ, +[HCOS], +[COE ], @ each species may vary signi icantly. In our case, the feed con5|§ts
of a large amount of nitric acid and a very small amount of carbonic
The invariant term Wis a charge-related quantity and &/the acid. Hence, the Wcan be regarded as zero and the effect of car-
concentration of the carbonate ion. These invariants are indepefyonate ion on the resulting pH is lumped gs e W, is the key
dent of the extent of the reaction. A relation between a hydrogefondition of the buffer stream. As is well known, the buffer stream
ion concentration and reaction invariants can be rewritten with Eqplays a very important role in deciding the characteristics of a neu-

(2) and (3). tralization process. Unless a neutralization process involves only
R R T e e o an "
1+Ko/[H] *KuKo/[HT  [H1] ’ 9 - 9 p

(i=1-4) (@ pared as prescribed, the Mé treated as an unknown parameter
because the inaccuracy of the information gndah result in a sig-

Actually, the pH value is not defined as a hydrogen ion concentranificant consequence in the characteristics of neutralization process.
tion but as ion activity. However, it can be assumed that the ion ac-

tivity is same as the ion concentration for the infinitely diluted solu- EXTENDED KALMAN EILTER
tion. Hence, the pH value can be determined using the above equa-

tions and the negative logarithm of the hydrogen ion concentration The extended Kalman fitter is a predictor-corrector type linear
if W, and W, are known. estimator obtained by the linearization of a nonlinear model at each
pH=—log([H']) () time step. It is used to estimate the states and parameters of a non-
) o linear system through the measurements using a function of the lin-
A dynamic process model for the pH neutralization process can bga ;e model with additive Gaussian white noise [Grewal and And-
derived from the component material balance for the reaction Ntews, 1993 Brown and Hwang, 1997]. The EKF procedure con-

variants. sists of two steps: time update step and measurement update step.
dWas _ _ + _ . _ The time update step projects forward the current state and error
Vot~ BlWar™Wer) *Go(Wez “Waa) *Gs(Was ~Wa) covariance estimates to obtain theriori estimates for the next

Korean J. Chem. Eng.(Vol. 21, No. 4)
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time step. The measurement update step incorporates a new meay..;=y+Hui(z..—z)+v,

sure ment into tha priori estlmgte togetan |mp'rovacposter|or| .. The EKF method uses linearized model along the trajectory that is
estimate. In other words, the time update step is a model prediction

' .~ "continually updated with the state estimates resulting from the mea-
and the measurement update step is a measurement correction.

The EKF can be used to find the unknown paramétaysex- surements. Thus, the nonlinear discrete process model should be

tending the state x to z that is augmented with the parameter vect!')rr]eanZ(Ed with respect 1o the estimales.z

6. This augmented states are defined as following form,

f(z,u)
F.=2 o L u:{g ﬂ Hm{ —qlchO}
Z(t){X} {f(x,t)H:ee} +{g(x,t)u} ®) "
6 0 0 The extended Kalman filter algorithm can be summarized the fol-
For discrete-time EKF design, a simple first-order Euler approxi-lowmg formulas.
mation is used over sampling periatd, Then the discrete-time pro- z,,=F2;+D
cess model can be obtained as follows: P..=FPF +Q
K =PleaHEa[HieaPLaH R
Zw{ }Z D ©) 2720 K (Y =9r1(250)
Pt++1:{| _Kt+1Ht+1} P (13)
where
where the superscriptrepresents the value without measurement
1-(q+ +u)A—t 0 At g correction and the superscﬁptapre;ents the corrected vaIue' with
A= GG Ty B= &y measurement. In the above equations, the state error covariance up-
i e 4O ’ At date R, should be checked for the symmetry and positive definite-
0 S ut)V 0 %y ness. In order to satisfy these conditions, another equivalent expres-

. sion for R,, called the Joseph form is used [Grewal and Andrews,
1= 10 , O= 00 ) D=|:(QZWaz+UWa3)ét (Q1Wb1+UWb3)A_t 00} 1993]
01 00 v v X i : .
Pt+1 ={ = Kt+1HI+1} PI+1{ = Kt+1Ht+1} +Kt+1R KI+1 (14)
Since the output equation in Eq. (7) is an implicit nonlinear func-
tion of output variable, this problem does not yield an analytical EXPERIMENTAL AND SIMULATION

solution in general. To solve the problem, the output equation is RESULTS WITH DISCUSSIONS

linearized atyand y.
The laboratory scale plant of a nonlinear time-varying pH neu-

Yerr TV tC; C(Xas X (10)  tralization process was built to test the performance of the simulta-
where neous state and parameter estimation and the details of this system
was described previous section. The states to be estimated were the
e =9e(%.Y) :[ 1 1*+2x10 e } reaction invariants of the effluent stream, which wegeand W,
X e, L1410 10 If these states were determined, the output pH could be calculated
_ac(x,y) from the nonlinear output equation, Eq. (4). The unmeasured dis-
&= ay |-, turbances, \which represented the acidity of the feed stream and

) ; ) W,,, which implied the concentration of carbonate ion in the buffer
107 +107" +4x 10" "0 : - :
= —— stream, would be estimated as parameters. To describe the behavior
(11077 +10°)° O of the pH neutralization process, these values should be known as
exactly as possible. However, it was difficult to directly measure these

del includi ! it e 1 Thei as\t)glues with sensors. Therefore, the extended Kalman filter was used
process model including gaussian white noise termasidw. Their to estimate these values.

coyanancgslarg Q an?)RtE respectively. Beca;utie the mtegtrated f[’_\'h'teln order to capture the characteristics of the pH neutralization
NOISE Mode! gives a betier convergence of the parameter esim rocess, the titration curves were obtained experimentally and they
tion, although the model parameters are actually constant, the par

eter values can be considered to be driven by a fictitious noise [Leg;ere shown in Fig. 2 together with the simulated itration curves.
i ig. 2 showed two pairs of titration curves at different buffer con-
and Ricker, 1994; Lee and Datta, 1994]. g P

centrations. Note that the process gain at a particular operating point
8.,=6+w, (11) was the slope of the titration curve at that condition. For the nom-
] ] . inal buffer concentration ([NaHGJ3=0.01 M), the process gain
With the integrated white noise, the augmented state-space modghried severely over the region shown. Moreover, the titration curves

=(In 10)%[0”“ +107 +x,

becomes for [NaHCQ],,=0 M was dramatically different from the curve ob-
tained under nominal conditions. As shown in Fig. 2 the simula-
2.,=Fiz +D { th} (12) tion and experimental titration curves matched reasonably well and
W it was evident that the model can describe the process correctly.
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Fig. 5. Performance of estimator in experiment: the true values
(solid) and the estimates (dashed).
The first experiment was conducted to test the performance of

the estimator under nominal operating condition. For this experi-

ment the flow rate of the base streagh\igas manipulated to ex-  sensitive to the changes in the carbonate ion of the streams as one
cite the process via a pseudo random binary sequence (PRBS) inmauld guess. It indicated that the parameter estimation, &by
sequence. The size of PRBS was +60 ml/min. Due to the procedbke pH values of the effluent stream might be slow and difficult.
nonlinearity, the pH changes showed highly asymmetric behavior. The next two experiments were performed to test the tracking
Figs. 4 and 5 showed the performances of the on-line EKF in botlability of the EKF for the time-varying parameter. The experiments
simulation and experiment. The initial guesses of the state and paere conducted for the concentration changes of the feed and buf-
rameter were deviated from their true values by £30%. Since théer stream. These disturbance caused to shift the titration curve or
concentration of feed and buffer streams were prepared in the lalshange its shape, which represented the process nature. In Figs. 6
oratory very carefully, the true values of parameters could be caland 7, the performance of the EKF for an abrupt chan@eah
culated from the prepared concentrations by Eqg(@)as 0.00295  feed had been shown in simulation and experiment. The value of
and@, was 0.01. The estimates of states and parameters closely fa was decreased by 30% (0.003 M HN&0.0021 M HNQ) at

lowed their true values after some initial transients. Also, the esti15 min, which meant that the hydrogen ion in the feed stream was
mated pH values of the effluent stream were almost exact to thabruptly decreased. The both simulation and experimental resullts il-
true values over the whole simulation and experiment time as exustrated the sudden increase of pH in response to decrease in feed
pected. The estimated parameter valfies, converged to the treencentration. They showed that the changgwés well traced by
values faster tha, . This result implied that pH values were lesthe estimator but the experimental estimatio eésulted in a little

Korean J. Chem. Eng.(Vol. 21, No. 4)
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mated pH values coincided with the measured values. Because thdrecause NaHCQwas dissociated into Nand HCQ and HCQ

was no significant difference in the titration curves for [NagGoO

tions.
Figs. 8 and 9 showed the results for a sudden chafgesfiich

(Fig. 3). To impalement the decreaséiof the buffer stream, the

tion invariants, the \W should vary in the same manner-a4.,
July, 2004

affected both reaction invariants as shown in Eq. (3). This fact had to
0.01 M and 0.008 M over the operating range above pH 6 as showloe incorporated in the design of estimator. The second one was that
in Fig. 3, the 20% difference in concentration of buffer solution did the pH response of the effluent stream for the decreased buffer con-
not significantly affect the characteristics of process at those condeentration was very slow because the flow rate of the buffer stream
was very small (36 ml/min). Finally, a change of the buffer con-
centration significantly altered the characteristics of pH neutraliza-
caused a change in the concentration of carbonate ion in the reactimn process because the shape of titration curve depended on the
buffer concentration. From Fig. 3, when the buffer stream concen-
concentration of NaHCQvas reduced to 0.003 M (70% decrease) tration decreased from the nominal operating condition to 70%, pro-
at 12 min. In this case, there were three notable differences in estiess gain increased significantly. The second and third phenomena
mation compared to the previous experiment. The first one was thatyere observed in the Figs. 8 and 9. At the moment when distur-
from the composition of buffer stream and the definitions of reac-bance was imposed, the pH appeared not to change, however, the
output response increased as time past. This gain increase in pro-
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cess characteristics could also be noticed from the increased range of New York (1997).
the changes in the output pH value for the same size of PRBS inputSho, K., Yeo, Y., Kim, J. and Koh, S., “Fuzzy Model Predictive Control
Though the tracking rate of the parameter was slow, the changes of of Nonlinear pH Proces&orean J. Chem. Eng.6, 208 (1999).
nonlinear properties were effectively estimated. Both the experimensrewal, M. and Andrews, A. P., “KALMAN FILTERING Theory and
tal and simulation results showed that the estimation of the changes Practice; Prentice-Hall INC., New Jersey (1993).
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